Ein Einheitstensor ist in der Kontinuumsmechanik die lineare Abbildung jedes Vektors auf sich selbst. Der Einheitstensor ist ein dimensionsloser Ein-Feld-Tensor, weil er die Vektoren aus einem euklidischen Vektorraum in denselben Vektorraum abbildet. Des Weiteren ist der Einheitstensor symmetrisch, orthogonal und unimodular. Die Koeffizienten des Einheitstensors zweiter Stufe werden Metrikkoeffizienten genannt.
Einheitstensoren treten in der Kontinuumsmechanik häufig auf. Der Einheitstensor zweiter Stufe kommt in den Verzerrungstensoren vor und der Einheitstensor vierter Stufe in vielen Materialmodellen (z. B. im Hookeschen Gesetz). Wegen seiner Wichtigkeit befasst sich dieser Artikel deshalb mit dem dreidimensionalen euklidischen Vektorraum und dem Einheitstensor zweiter Stufe. Nur im gleichnamigen Kapitel ist vom Einheitstensor vierter Stufe die Rede. Eine Verallgemeinerung auf Räume beliebiger endlicher Dimension ist in einfacher Weise möglich.
Definition
Gegeben sei ein euklidischer Vektorraum  und die Menge der linearen Abbildungen  von  nach . Dann ist der Einheitstensor  definiert als
- .
Schreibweisen
Für den Einheitstensor werden die Schriftzeichen „1“, „I“ oder „E“ benutzt. Als Schriftauszeichnung wird der Buchstabe mit Doppelstrich (), Fettdruck (), Unter- () oder Überstreichung () benutzt. In Indexschreibweise stimmt dieser Einheitstensor mit dem Kronecker-Delta  überein.
Tensoren vierter Stufe können mit der aufgesetzten vier gekennzeichnet werden, beispielsweise: .
In diesem Artikel wird  für den Einheitstensor zweiter Stufe und  für den Einheitstensor vierter Stufe verwendet.
Eigenschaften
Weil die Identität von Tensoren über die Bilinearform nachgewiesen werden kann, ist jeder Tensor  für den gilt
identisch zum Einheitstensor. Wegen
ist der Einheitstensor gleich seiner Inversen und wegen
ist der Einheitstensor zudem symmetrisch. Aus den letzten beiden Eigenschaften ergibt sich, dass der Einheitstensor auch orthogonal ist. Weil der Einheitstensor keinen Vektor spiegelt (in den negativen Vektor überführt) ist der Einheitstensor eigentlich orthogonal, weswegen er die „Drehung“ um 0° repräsentiert. Seine Determinante ist also gleich eins
weswegen der Einheitstensor unimodular ist. Der Einheitstensor ist im Tensorprodukt "·" das Neutrale Element:
- .
Das Frobenius-Skalarprodukt zweier Tensoren A und B wird mittels der Spur A : B := Sp(AT · B) gebildet. Das Skalarprodukt des Einheitstensors mit einem anderen Tensor zweiter Stufe liefert somit dessen Spur:
- .
Eigensystem
Aus den Eigenschaften des Einheitstensors leitet sich sofort ab, dass jeder Vektor Eigenvektor des Einheitstensors mit dem zugehörigen Eigenwert eins ist. Weil auch jeder Basisvektor  einer beliebigen Orthonormalbasis des zugrunde liegenden Vektorraums Eigenvektor des Einheitstensors ist, können auch die Darstellungen
benutzt werden. Darin bildet  das dyadische Produkt.
Darstellungsweisen mit Basisvektoren
Bezüglich der Standardbasis  wird der Einheitstensor als
geschrieben, so dass er hier mit seiner Matrix-Notation übereinstimmt. Bei einer anderen Orthonormalbasis mit Basisvektoren  kann er als
notiert werden. Ist  eine beliebige Basis des Vektorraums und  die dazu duale Basis, dann ist
- .
Ist  eine weitere beliebige Basis des Vektorraums und  die dazu duale Basis, dann gilt die allgemeine Darstellung:
- .
Invarianten
Die drei Hauptinvarianten des Einheitstensors sind
Wegen  sind dies auch die Hauptinvarianten der n-ten Potenzen des Einheitstensors. Die Spur des Einheitstensors ist gleich der Dimension des zugrunde gelegten Vektorraums.
Der Betrag des Einheitstensors ist die Wurzel aus der Dimension des Vektorraums:
- .
Die Eigenwerte (hier alle gleich eins) sind ebenfalls invariant.
Metrikkoeffizienten
Der Abstand zweier Punkte mit den Ortsvektoren
mit Koordinaten  und  bezüglich eines beliebigen schiefwinkligen Basissystems  berechnet sich mit der Skalarproduktnorm zu
- .
Das heißt, dass die Produkte der Koeffizienten  des Koordinatenvektors des Abstandsvektors  im Skalarprodukt mit den Koeffizienten  gewichtet werden. In der Darstellung
werden die Koeffizienten  deshalb Metrikkoeffizienten genannt, weil mit der Skalarproduktnorm die Metrik des Vektorraums vorgegeben ist. Sind die Basisvektoren  kovariant (Tangentenvektoren an das krummlinige Koordinatensystem) dann sind die Skalarprodukte  die kovarianten Metrikkoeffizienten. Entsprechend sind dann die Koeffizienten  die kontravarianten Metrikkoeffizienten.
Einheitstensor vierter Stufe
Der Einheitstensor vierter Stufe bildet Tensoren zweiter Stufe auf sich selbst ab. Sind die Tensoren zweiter Stufe  die Standardbasis des Raums  der Tensoren zweiter Stufe, dann ist
der Einheitstensor vierter Stufe. Wird
definiert, kann wie üblich auch
geschrieben werden. Ist  eine beliebige Basis des Raums  und  die dazu duale Basis, dann gilt
oder mit
in der üblichen Schreibweise:
- .
Beispiel
Die Vektoren
bilden eine Basis im  und ihre duale Basis ist
- .
Damit bekommt man
Siehe auch
Literatur
- H. Altenbach: Kontinuumsmechanik. Springer, 2012, ISBN 978-3-642-24118-5.