DQ-Herculis-Stern

Schematischer Aufbau eines DQ-Herculis-Sterns mit Materiestrom vom Begleitstern und Akkretionsscheibe, deren innerer Teil durch das Magnetfeld des Weißen Zwerges aufgelöst wurde.

DQ-Herculis-Sterne (englisch Intermediate polars, kurz IPs) bilden zusammen mit den AM-Herculis-Sternen die Klasse der magnetischen kataklysmischen Veränderlichen (Abk. mCVs), in denen durch das starke Magnetfeld des Weißen Zwerges die Akkretionsgeometrie des Massentransfers stark verändert wird.[1][2][3] Der Massenübertrag auf den Weißen Zwerg erfolgt dabei, wie allgemein in kataklysmischen Veränderlichen, von einem massearmen Hauptreihenstern, der sein Roche-Volumen ausfüllt.

Im Gegensatz zu den AM-Herculis-Sternen ist die Magnetfeldstärke des Weißen Zwerges geringer (< 10 Megagauß), so dass dieser frei rotieren kann und in der Regel die Bildung einer Akkretionsscheibe nicht unterbunden wird. Auch die im Vergleich zu den AM-Herculis-Sternen deutlich höheren Akkretionsraten verhindern ebenfalls eine Spin-Bahn-Kopplung, bzw. führen durch Drehimpulsübertrag zu sehr kurzen Rotationsperioden des Weißen Zwerges (z. B. bei AE Aqr 33 Sekunden).

Die Akkretion auf die Oberfläche des Weißen Zwerges erfolgt entlang der Magnetfeldlinien, wobei die gasförmige Materie vom Innenrand der Akkretionsscheibe ankoppelt. Beim radialen Aufprall auf den Weißen Zwerg entsteht ein mehrere Millionen Kelvin heißes Plasma in einer kompakten, einige hundert Kilometer großen, Akkretionsregion. Die dort abgestrahlte Leuchtkraft von bis zu 1033 erg pro Sekunde wird vor allem als harte Röntgenbremsstrahlung im Bereich von 6 bis 10 keV freigesetzt. Ist die Rotationsachse gegenüber den magnetischen Polen geneigt so kommt es zu einer pulsierenden Röntgenquelle. Infrarote und optische Zyklotronstrahlung, sowie deren Polarisation, sind in diesen Objekten nur schwer nachzuweisen, da in genannten Spektralbereichen die Strahlung der Akkretionsscheibe dominiert mit einem Kontinuum, welches mit Emissionslinien mit Doppelpaeks durchsetzt ist[4]. Die Veränderlichkeit sowohl im optischen als auch im Röntgenbereich geht mit einer variablen Massentransferrate sowie der Wechselwirkung in der Magnetosphäre des Weißen Zwerges einher. Kurzfristige Flares werden als eine Folge von thermonuklearen Explosionen auf der Oberfläche des kompakten Sterns interpretiert.

Falschfarbenbild der expandieren Gasscheibe um DQ Herculis
Überlagerung von Aufnahmen der Nova GK Persei im Röntgenbereich, blau, im optischen Bereich, gelb und im Radiowellen-Bereich, rosa; erstellt aus Aufnahmen des Chandra-Weltraumteleskops, des Hubble-Weltraumteleskops und des Very Large Array

Die Bahnperioden der 70 bis 150 bekannten DQ-Herculis-Sterne[5] sind im Durchschnitt länger als die der AM-Herculis-Sterne und liegen in der Regel oberhalb der Periodenlücke der kataklysmischen Veränderlichen von 3 Stunden. Die Weißen Zwerge in den DQ-Herculis-Sternen haben Rotationsperioden zwischen 33 Sekunden und 67 Minuten. Es besteht eine grobe Korrelation zwischen Rotations- und Bahnperiode, wobei die Rotationsperiode meistens kürzer als 1/10 der Bahnperiode ist. Allerdings überlagern sich die Magnetfelddichten der Polaren und DQ-Herculis-Sterne. Es wird angenommen, dass sich die meisten DQ-Herculis-Sterne mit starken Magnetfeldern in Polare umwandeln, nachdem die Umlaufdauer der Bahn des Doppelsternsystems auf Werte von weniger als 3 Stunden verkürzt hat. Dagegen sollte es bei DQ-Herculis-Sternen mit magnetischen Momenten von weniger als 5×1033 Gcm3 nicht zu einer Synchronisation der Rotationsdauer des Weißen Zwergen und der Umlaufdauer des Doppelsternsystems kommen.[6]

Ein Teil der DQ-Herculis-Sterne waren mal Superweiche Röntgenquellen, die die akkretierte Materie in einem stetigen Wasserstoffbrennen auf der Oberfläche des Weißen Zwerges in Helium umgewandelt haben. Während dieser Phase der kontinuierlichen Akkretion hat sich auch die Rotationsperiode des Weißen Zwerges auf die bei DQ-Herculis-Sternen beobachteten Werte von einigen 10 Sekunden bis einigen Minuten beschleunigt. Die IPs sind häufig nicht in der Lage die gesamte auf den Weißen Zwerg strömende Materie zu akkretieren. Dies wird als der Propeller-Mechanismus bezeichnet, bei dem der Akkretionsstrom in Feuerbälle aufgespaltet wird und diese nur zu einem kleinen Teil das schnell rotierende, an den Weißen Zwerg gebundene Magnetfeld überwinden können. Der größte Teil, häufig mehr als 90 %, wird vom Propeller aus dem Doppelsternsystem heraus beschleunigt. Überwindet einer der Feuerbälle das Magnetfeld und wird auf den Weißen Zwerg akkretiert so führt dies zu einem Flare. Die Feuerbälle aus Gas vom Begleitstern haben dabei einen typischen Durchmesser von 10.000 km und eine Masse von 1014 Tonnen bei Temperaturen um die 20.000 K.[7]

Bekannte DQ-Herculis-Sterne

Siehe auch

Einzelnachweise

  1. Patterson J.: The DQ Herculis stars. In: Publications of the Astronomical Society of the Pacific. Vol. 106, 1994, S. 209, doi:10.1086/133375, bibcode:1994PASP..106..209P (englisch).
  2. B. Warner: Cataclysmic variable stars, 1995, ISBN 0-521-41231-5
  3. Cuno Hoffmeister, G. Richter, W. Wenzel: Veränderliche Sterne. J. A. Barth Verlag., Leipzig 1990, ISBN 3-335-00224-5
  4. N.R. Ikhsanov and N.G. Beskrovnaya: AE Aquarii represents a new subclass of Cataclysmic Variables. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1205.4330v1.
  5. The Catalog of IPs and IP Candidates by Right Ascension. NASA, abgerufen am 8. Januar 2022 (englisch).
  6. A. Aungwerojwit, B.T. Gänsicke, P.J. Wheatley, S.Pyrzas, B. Staels, T. Krajci, P. Rodríguez-Gil: IPHAS J062746.41+014811.3: a deeply eclipsing intermediate polar. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1209.0719.
  7. R. K. Zamanov, G. Y. Latev, K. A. Stoyanov, S. Boeva, B. Spassov, S. V. Tsvetkova: Simultaneous UBVRI observations of the cataclysmic variable AE Aquarii: temperature and mass of fireballs. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1208.2834.

Auf dieser Seite verwendete Medien

DQHerNebula.png
Autor/Urheber: PopePompus, Lizenz: CC BY-SA 4.0
A false-color image of the shell surrounding the nova DQ Her, made from three narrow band images: Blue = 4800 angstroms, green = Halpha and red = [NII] at 6583. From Santamaria et al. 2020 DOI=10.3847/1538-4357/ab76c5 uploaded with permission from E. Santamaria .
GKPersei-MiniSuperNova-20150316.jpg
"Mini Supernova" Explosion Could Have Big Impact

http://www.nasa.gov/mission_pages/chandra/mini-supernova-explosion-could-have-big-impact.html

In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings.

Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions.

A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.

A nova can occur if the strong gravity of a white dwarf pulls material from its orbiting companion star. If enough material, mostly in the form of hydrogen gas, accumulates on the surface of the white dwarf, nuclear fusion reactions can occur and intensify, culminating into a cosmic-sized hydrogen bomb blast. The outer layers of the white dwarf are blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space.

Classical novas can be considered to be “miniature” versions of supernova explosions. Supernovas signal the destruction of an entire star and can be so bright that they outshine the whole galaxy where they are found. Supernovas are extremely important for cosmic ecology because they inject huge amounts of energy into the interstellar gas, and are responsible for dispersing elements such as iron, calcium and oxygen into space where they may be incorporated into future generations of stars and planets.

Although the remnants of supernovas are much more massive and energetic than classical novas, some of the fundamental physics is the same. Both involve an explosion and creation of a shock wave that travels at supersonic speeds through the surrounding gas.

The more modest energies and masses associated with classical novas means that the remnants evolve more quickly. This, plus the much higher frequency of their occurrence compared to supenovas, makes classical novas important targets for studying cosmic explosions.

Chandra first observed GK Persei in February 2000 and then again in November 2013. This 13-year baseline provides astronomers with enough time to notice important differences in the X-ray emission and its properties.

This new image of GK Persei contains X-rays from Chandra (blue), optical data from NASA’s Hubble Space Telescope (yellow), and radio data from the National Science Foundation’s Very Large Array (pink). The X-ray data show hot gas and the radio data show emission from electrons that have been accelerated to high energies by the nova shock wave. The optical data reveal clumps of material that were ejected in the explosion. The nature of the point-like source on the lower left is unknown.

Over the years that the Chandra data span, the nova debris expanded at a speed of about 700,000 miles per hour. This translates to the blast wave moving about 90 billion miles during that period.

One intriguing discovery illustrates how the study of nova remnants can provide important clues about the environment of the explosion. The X-ray luminosity of the GK Persei remnant decreased by about 40% over the 13 years between the Chandra observations, whereas the temperature of the gas in the remnant has essentially remained constant, at about one million degrees Celsius. As the shock wave expanded and heated an increasing amount of matter, the temperature behind the wave of energy should have decreased. The observed fading and constant temperature suggests that the wave of energy has swept up a negligible amount of gas in the environment around the star over the past 13 years. This suggests that the wave must currently be expanding into a region of much lower density than before, giving clues to stellar neighborhood in which GK Persei resides.

A paper describing these results appeared in the March 10th issue of The Astrophysical Journal. The authors were Dai Takei (RIKEN, Spring-8 Center Japan), Jeremy Drake (Smithsonian Astrophysical Observatory), Hiroya Yamaguichi (Goddard Space Flight Center), Patrick Slane (Smithsonian Astrophysical Observatory), Yasunobu Uchimaya (Rikkyo University, Japan), Satoru Katsuda (Japanese Aerospace Exploration Agency).

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.
Intermediate polar.gif
Diagram of an Intermediate Polar: Matter flows from the companion star into an accretion disk around the white dwarf, but is disrupted by the white dwarf's magnetic field.