DGLAP-Gleichungen
Die DGLAP-Gleichungen beschreiben in der Teilchenphysik, wie die Partondichten von der betrachteten Energieskala abhängen.[1] Sie wurden unabhängig von den Physikern Yuri Dokshitzer,[2] Wladimir Naumowitsch Gribow und Lew Nikolajewitsch Lipatow,[3] sowie Guido Altarelli und Giorgio Parisi[4] entwickelt, nach deren Anfangsbuchstaben die Gleichungen benannt sind. Nach den letzten beiden wurden die Gleichungen früher auch als Altarelli-Parisi-Gleichungen bezeichnet.
Hintergrund
Partondichten sind Verteilungsfunktionen von Bestandteilen stark gebundenener Systeme der starken Wechselwirkung wie zum Beispiel Protonen und hängen vom Impulsbruchteil des Partons sowie der betrachteten Energieskala ab. Dabei ist der Impulsbruchteil zwischen beschränkt, die Energieskala ist hingegen zu hohen Energien beliebig weit offen. Da die Kopplungskonstante der starken Wechselwirkung in gebundenen Systemen groß wird, sind diese Systeme perturbativ nicht beschreibbar; die Partondichten müssen daher experimentell bestimmt werden. Die DGLAP-Gleichungen ermöglichen es, diese experimentellen Messungen, statt für alle möglichen und , bei einer festen Energiesakala durchzuführen und aus diesen Daten das Verhalten der Partondichten auf beliebigen Energieskalen (bei festem Impulsbruchteil) zu erschließen.
Führende Ordnung
Die DGLAP-Gleichungen in der führenden Ordnung der Störungsreihe in der Kopplungskonstanten der starken Wechselwirkung lauten:
wobei die Splitting-Funktionen bezeichnet. Hierbei ist die Energieskala des betrachteten Prozesses, der Impulsbruchteil des betrachteten Teilchens im Vergleich zum Mutterteilchen und die Partondichtefunktion für Quarks beziehungsweise die für Antiquarks mit Flavour und die der Gluonen.
Splitting-Funktionen
Die Splitting-Funktionen nehmen für die möglichen Fälle vier verschiedene Formen an: – Ein Quark strahlt ein Quark ab, – Ein Quark strahlt ein Gluon ab, – Ein Gluon strahlt ein Quark ab und – Ein Gluon strahlt ein Gluon ab. Für die Splitting-Funktionen ist unerheblich, ob es sich um Quarks oder Antiquarks handelt Darüber hinaus ist für die Gluon-Quark-Splittingfunktionen ebenfalls das Flavour der Quarks unerheblich, während für die Quark-Quark-Splittingfunktion nur Quarks identischen Flavours ineinander übergehen. Die Splitting-Funktionen haben daher die Form:
Dabei sind der quadratische Casimir-Operator der fundamentalen Darstellung der Lie-Gruppe der Theorie, im Standardmodell der , der Casimir-Operator der adjungierten Darstellung, der Index der fundamentalen Darstellung und die Anzahl an Quark-Flavours.[5] Außerdem wurde die Plus-Distribution verwendet, die über die Gleichung[1]
definiert ist.
Alternative Basis
Statt der physikalischen -Basis kann zur Vereinfachung der Gleichungen die -Basis verwendet werden. Dabei gilt
Der Superskript beziffert die Non-Singulett-Dichtefunktion, während der Superskript die Singulett-Dichtefunktion bezeichnet. Der Begriff des Singuletts bezieht sich in diesem Fall nicht auf die Multiplizität, sondern auf die Baryonenzahl, die sich im Fall des NS-Zustandes zu und im Fall des S-Zustandes zu ergibt.
Durch die Basistransformation entkoppeln die DGLAP-Gleichungen insofern, als dass zur Lösung der NS-Verteilungsfunktionen die Gluon-Verteilungsfunktion nicht benötigt wird:
DGLAP-Gleichungen im Mellin-Raum
Die DGLAP-Gleichungen können nach einer Mellin-Transformation vereinfacht dargestellt werden, da sich im Mellin-Raum das Integral in ein Produkt wandelt. Sie lauten dann:
Dabei ist die Mellin-Transformierte gegeben durch:
Die auftretenden Funktionen nennt man anomale Dimension und sind die Mellin-Transformierten der Splitting-Funktionen.
Singulett/Non-Singulett-Basis im Mellin-Raum
Die DGLAP-Gleichungen in der Singulett/Non-Singulett-Basis lauten im Mellin-Raum entsprechend
Lösung
Durch diese Darstellung kann eine kompakte Lösung für die DGLAP-Gleichungen für die Non-Singulett-Verteilungsfunktionen angegeben werden, da die Energieskalenabhängigkeit der Kopplungskonstanten durch die Callan-Symanzik-Gleichung bestimmt ist. In führender Ordnung gilt
mit einer Referenzskala und einer theorieabhängigen Konstanten
Dann ist die Lösung für die Non-Singulett-Verteilungsfunktion
Weiterführendes
- M. E. Peskin, D. V. Schroeder: An Introduction to Quantum Field Theory. Westview Press, Boulder 1995, ISBN 0-201-50397-2, S. 590 ff.
Einzelnachweise
- ↑ a b Guido Altarelli: QCD evolution equations for parton densities. In: Scholarpedia. Band 4, Nr. 1, 2009, S. 7124, doi:10.4249/scholarpedia.7124.
- ↑ Yuri L. Dokshitzer: Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e− Annihilation by Perturbation Theory in Quantum Chromodynamics. In: Sov. Phys. JETP. Band 46, Nr. 4, 1977, S. 641–653 (jetp.ac.ru [PDF; abgerufen am 9. März 2014]).
- ↑ V. Gribov, L. Lipatov: Deep inelastic e p scattering in perturbation theory. In: Sov. J. Nucl. Phys. Band 15, 1972, S. 438–450.
- ↑ G. Altarelli, G. Parisi: Asymptotic freedom in parton language. In: Nuclear Physics B. Band 126, Nr. 2, 1977, S. 298–318, doi:10.1016/0550-3213(77)90384-4.
- ↑ CTEQ Handbook.