Bremsrakete

Bremsraketen am SkyCrane

Eine Bremsrakete, auch manchmal als Retrorakete bezeichnet, dient zur Verringerung der Geschwindigkeit eines Raumfahrzeuges zur Änderung der Umlaufbahn oder zur weichen Landung. Bremsraketen stoßen das Abgas nicht entgegen, sondern in Flugrichtung aus, was das Raumfahrzeug verlangsamt oder zum Stillstand bringt.

Bremsraketen zum Verlassen der Umlaufbahn

Durch den Einsatz von Bremsraketen werden Raumfahrzeuge in der Umlaufbahn genügend abgebremst, dass ein Wiedereintritt und eine Landung erfolgen kann. Die notwendige Geschwindigkeitsänderung in einer niedrigen Erdumlaufbahn beträgt dabei nur etwa 90 m/s, die restliche Geschwindigkeit wird durch atmosphärische Reibung abgebaut.

Die Mercury- und Gemini-Raumschiffe der NASA hatten für diesen Zweck separate Bremsraketen mit Feststofftriebwerken. Die vier Bremsraketen des Gemini-Raumschiffs brannten je 5,5 s, insgesamt also 22 s.[1] Im Gegensatz dazu verwendet das Space Shuttle, ebenso wie früher das Apollo-Raumschiff keine separaten Bremsraketen, sondern die für Bahnkorrekturen vorgesehene Triebwerke. Bei den Erdorbit-Missionen des Apollo-Programms brannte das SPS-Triebwerk hierfür etwa 12 s[2][3], während das Orbital Maneuvering System des Space Shuttles etwa drei Minuten lang brennt.[4]

Der erste Einsatz einer Bremsrakete zum Verlassen des Orbits erfolgte am 14. April 1959 bei der Rückkehrkapsel des Aufklärungssatelliten Discoverer 2. Da die Bremsraketen allerdings zum falschen Zeitpunkt gezündet wurden, ging die Rückkehrkapsel nicht im vorgesehenen Zielgebiet nieder.[5]

Bremsraketen bei suborbitalen Flügen

Bei den suborbitalen Testflügen des Mercury-Programms der NASA wurden ebenfalls Bremsraketen eingesetzt. Dies war für ballistische Flüge nicht zwingend notwendig, war aber ein wichtiger Test für die orbitalen Flüge. Der erste Einsatz erfolgte am 19. Dezember 1960 bei der Mission Mercury-Redstone 1A. Die beiden Bremsraketen der Mercury-Kapsel brannten je 10 s, aber zeitlich um 5 s versetzt und verringerten die Geschwindigkeit um 168 m/s.

Bremsraketen bei der Mondlandung

Die Mondlandefähre von Apollo 11. An der Unterseite der Landefähre ist die Bremsrakete zu erkennen.

Bei der Landung auf dem Mond oder auf einem anderen Himmelskörper ohne Atmosphäre können weder Fallschirme noch atmosphärische Bremsung verwendet werden, um Geschwindigkeit abzubauen. Es muss also die gesamte Bahngeschwindigkeit durch Bremsraketen abgebaut werden, was zu wesentlich längeren Brenndauern und höherem Treibstoffverbrauch führt. Der erste erfolgreiche Einsatz einer Bremsrakete für eine weiche Mondlandung erfolgte am 3. Februar 1966 durch Luna 9.

Einsatz von Bremsraketen kurz vor dem Aufsetzen

Landung einer Sojus

Im Gegensatz zu US-amerikanischen Raumschiffen, die auf dem Wasser (Wasserung) oder im Gleitflug aufsetzen, landen russische Raumschiffe auf dem Festland. Trotz des Einsatzes von Fallschirmen ist die Fallgeschwindigkeit der Rückkehrkapsel noch sehr hoch. Deshalb werden kurz vor dem Aufsetzen weitere Bremsraketen gezündet, die die Geschwindigkeit weiter verlangsamen und den Aufprall mildern. Dieses System kam zum ersten Mal mit dem Woschod-Raumschiff Kosmos 47 zum Einsatz und wird auch heute noch für Sojus-Raumschiffe verwendet.[6]

Einzelnachweise

  1. Gemini Technical Description in der Encyclopedia Astronautica, abgerufen am 3. Januar 2011 (englisch).
  2. Apollo 7 Timeline. In: Apollo By The Numbers. NASA, abgerufen am 3. Januar 2011 (englisch).
  3. Apollo 9 Timeline. In: Apollo By The Numbers. NASA, abgerufen am 3. Januar 2011 (englisch).
  4. Landing 101. NASA, 23. November 2007, abgerufen am 3. Januar 2011 (englisch).
  5. Discoverer 2 im NSSDCA Master Catalog, abgerufen am 4. Januar 2011 (englisch). „Discoverer 2 was the first satellite ... to send its reentry vehicle back to earth“
  6. Soyuz Undocking/Landing Timeline. NASA, abgerufen am 4. Januar 2011 (englisch): „Six Soft Landing Engines fire to slow the vehicle's descent rate to 1.5 meters (5 feet) per second just 2.6 feet above the ground.“

Auf dieser Seite verwendete Medien

593496main pia14840 full Curiosity Touching Down, Artist's Concept.jpg
Curiosity Touching Down, Artist's Concept

This artist's concept depicts the moment that NASA's Curiosity rover touches down onto the Martian surface.

The entry, descent, and landing (EDL) phase of the Mars Science Laboratory mission begins when the spacecraft reaches the Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars.

Entry, descent, and landing for the Mars Science Laboratory mission will include a combination of technologies inherited from past NASA Mars missions, as well as exciting new technologies. Instead of the familiar airbag landing systems of the past Mars missions, Mars Science Laboratory will use a guided entry and a sky crane touchdown system to land the hyper-capable, massive rover.

The sheer size of the Mars Science Laboratory rover (over one ton, or 900 kilograms) would preclude it from taking advantage of an airbag-assisted landing. Instead, the Mars Science Laboratory will use the sky crane touchdown system, which will be capable of delivering a much larger rover onto the surface. It will place the rover on its wheels, ready to begin its mission after thorough post-landing checkouts.

The new entry, descent and landing architecture, with its use of guided entry, will allow for more precision. Where the Mars Exploration Rovers could have landed anywhere within their respective 93-mile by 12-mile (150 by 20 kilometer) landing ellipses, Mars Science Laboratory will land within a 12-mile (20-kilometer) ellipse! This high-precision delivery will open up more areas of Mars for exploration and potentially allow scientists to roam "virtually" where they have not been able to before.

In the depicted scene, Curiosity is touching down onto the surface, suspended on a bridle beneath the spacecraft's descent stage as that stage controls the rate of descent with four of its eight throttle-controllable rocket engines. The rover is connected to the descent stage by three nylon tethers and by an umbilical providing a power and communication connection. When touchdown is detected, the bridle will be cut at the rover end, and the descent stage flies off to stay clear of the landing site.
Soyuz TMA-20 landing.jpg
The Soyuz TMA-20 spacecraft is seen as it lands with Expedition 27 Commander Dmitry Kondratyev and Flight Engineers Paolo Nespoli and Cady Coleman in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews.
Apollo 11 Lunar Module Eagle in landing configuration in lunar orbit from the Command and Service Module Columbia.jpg
The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine.