Bariumhydrid

Kristallstruktur
Kristallstruktur von Bariumhydrid
_ Ba2+ 0 _ H
Allgemeines
NameBariumhydrid
Andere Namen

Bariumdihydrid

VerhältnisformelBaH2
Kurzbeschreibung

grauer Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer13477-09-3
EG-Nummer236-763-3
ECHA-InfoCard100.033.407
PubChem83513
WikidataQ4138043
Eigenschaften
Molare Masse139,34 g·mol−1
Aggregatzustand

fest

Dichte

4,21 g·cm−3[2]

Schmelzpunkt

375 °C[2]

Löslichkeit

Zersetzung in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[2]
Gefahrensymbol

Achtung

H- und P-SätzeH: 302​‐​332
P: 261​‐​264​‐​304+340​‐​301+312​‐​312​‐​501[2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Bariumhydrid ist ein Hydrid des Erdalkalimetalls Barium mit der Summenformel BaH2.

Gewinnung und Darstellung

Bariumhydrid entsteht aus Barium und Wasserstoff bei mäßigen Temperaturen.[3]

Eigenschaften

Bariumhydrid ist ein grauer Feststoff, der sich in Wasser und Säuren zu Bariumhydroxid und Wasserstoff zersetzt.[1] Er gehört zu den salzartigen Hydriden und bildet eine Hochdruckmodifikation im Ni2In-Typ aus. Bei normalen Umgebungsbedingungen kristallisiert es in einer Cotunnit-Struktur mit der Raumgruppe Pnma (Raumgruppen-Nr. 62)Vorlage:Raumgruppe/62. Ein reversibler, struktureller Phasenübergang erster Ordnung wird bei einem Druck von 1,6 GPa beobachtet. Die Hochdruckphase kann durch eine hexagonale Einheitszelle mit einer vorgeschlagenen Ni2In-Struktur mit der Raumgruppe P63/mmc (Raumgruppen-Nr. 194)Vorlage:Raumgruppe/194 indiziert werden, wobei sich die Barium und Wasserstoff-Atome in speziellen Positionen befinden.[4] Oberhalb von 50 GPa findet ein weiterer Phasenübergang statt.[5]

Verwendung

Bariumhydrid kann in der Synthese von Ammoniak eingesetzt werden, findet dort aber keine industrielle Anwendung.[6][7]

Einzelnachweise

  1. a b c Dale L. Perry: Handbook of Inorganic Compounds. CRC Press, 1995, ISBN 978-0-8493-8671-8 (books.google.com).
  2. Willi Machu: Chemie und chemische Technologie. Springer-Verlag, 2013, ISBN 978-3-7091-2395-9 (books.google.com).
  3. Jesse S. Smith, Serge Desgreniers, John S. Tse, Dennis D. Klug: High-pressure phase transition observed in barium hydride. In: Journal of Applied Physics. Band 102, Nr. 4, 2007, S. 043520, doi:10.1063/1.2772427.
  4. K. Kinoshita, M. Nishimura, Y. Akahama, H. Kawamura: Pressure-induced phase transition of BaH2: Post Ni2In phase. In: Solid State Communications. Band 141, Nr. 2, 2007, S. 69–72, doi:10.1016/j.ssc.2006.09.045.
  5. W. Gao, P. Wang, J. Guo, F. C, T. He, Q. Wang, G. Wu, P. Chen: Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt. In: ACS Catalysis. 5. Auflage. Nr. 7, 2017, S. 3654–3661, doi:10.1021/acscatal.7b00284.
  6. W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. L. & P. Chen: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. In: Nature Energy. Nr. 3, 2018, S. 1067–1075, doi:10.1038/s41560-018-0268-z.

Auf dieser Seite verwendete Medien

Cotunnite structure.png
Autor/Urheber: Solid State, Lizenz: CC BY-SA 3.0
Kristallstruktur des Minerals Cotunnit (Blei(II)-chlorid, PbCl2; orthorhombisch, Pnam). Ein Koordinationspolyeder der Pb(II)-Kationen ist dargestellt und zeigt die Koordinationssphäre aus neun Chloratomen. Kristallographische Daten: https://dx.doi.org/10.1016/0167-2738(88)90376-1