Areografie
Areografie oder Areographie (von altgriechisch Άρης Ares für Mars und altgriechisch γράφειν gráfein für beschreiben) bezeichnet die Geografie des Mars, also die Untersuchung, Beschreibung und Kartierung der Oberflächenstrukturen des vierten Planeten des Sonnensystems.
Seine nördliche und seine südliche Hälfte unterscheiden sich deutlich voneinander, was als Dichotomie des Mars bezeichnet wird: die Nordhalbkugel besteht überwiegend aus einer einzigen Tiefebene, während die südliche Hemisphäre um fünf Kilometer über dem Niveau der nördlichen Ebenen liegt.
Geodätische und kartografische Definitionen
Koordinaten
Wie auf der Erde werden ellipsoidische Koordinaten verwendet, die man aber bei höherer Genauigkeit wegen der Dichotomie nicht auf ein (zweiachsiges) Rotationsellipsoid, sondern auf ein dreiachsiges Ellipsoid beziehen muss. Sie heißen areografische Koordinaten; ihre Breitengrade werden von dem durch die Rotation festgelegten Äquator gezählt, alle Längenkreise gehen durch die zwei Rotationspole. Der Nullmeridian ist definiert durch den kleinen (Durchmesser 500 m), etwas südlich des Marsäquators liegenden Krater Airy-0. Dieser liegt innerhalb des größeren Kraters Airy, benannt nach dem englischen Astronomen George Biddell Airy, dessen Festlegung des irdischen Nullmeridians durch die Mitte des Royal Greenwich Observatory 1884 international übernommen wurde.[1]
Airy wiederum liegt innerhalb der „Meridianbucht“ (Sinus Meridiani), die von der Erde aus auffällig dunkel erscheint. Sie wurde von den deutschen Astronomen Wilhelm Beer und Johann Heinrich Mädler in den 1830er Jahren als Beobachtungsmerkmal verwendet, um die Rotationsdauer des Mars zu bestimmen. Dieses von ihnen schlicht „A“ genannte Merkmal wurde 1877 von Giovanni Schiaparelli zur Festlegung des Nullmeridians für seine Marskarten verwendet. Die Daten von Mariner 9 erforderten 1972 eine genauere Definition, wofür man den Krater Airy-0 wählte.[2]
Höhe
Frühere topografische Modelle definierten das Nullniveau über den Atmosphärendruck, und zwar wurde ein Druck von 6,1 mbar als Referenzdruck gewählt. Dieser Wert entspricht in etwa dem durchschnittlichen Druck in der Marsatmosphäre und zufälligerweise auch dem Tripelpunkt des Wassers. Dies bedeutet, dass auf der Marsoberfläche nur an Orten unterhalb des Nullniveaus Wasser in flüssiger Form theoretisch vorkommen kann.
Bei einer Definition des Nullniveaus über den Atmosphärendruck führen jedoch vor allem saisonale Bewegungen in der Marsatmosphäre zu Inkonsistenzen. Deshalb wurde entsprechend dem Geoid auf der Erde ein Areoid festgelegt, das durch eine Äquipotentialfläche der Schwere definiert ist. Diese Definition wurde in Beziehung zur bisher verwendeten Definition über den Druck von 6,1 mbar gewählt.[3][4][5]
Einzelnachweise
- ↑ Oliver Morton: Mapping Mars: Science, Imagination, and the Birth of a World. Picador USA, New York 2002, ISBN 0-312-24551-3, Seite 22f
- ↑ Michel Capderou: Satellites: orbits and missions. Springer Verlag, Paris 2005, ISBN 2-287-21317-1, Seite 406
- ↑ David E. Smith et al.: Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. In: Journal of Geophysical Research. 106: 23689-23722, 2001 (online (Memento des Originals vom 24. Juni 2010 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. ; PDF-Datei; 3,7 MB)
- ↑ NASA: Mars Global Surveyor: MOLA MEGDRs
- ↑ A. A. Ardalan, R. Karimi, E. W. Grafarend: A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars. In: Earth Moon Planet. 106:1–13, 2010 (doi:10.1007/s11038-009-9342-7)
Literatur
- Ulf von Rauchhaupt: Der neunte Kontinent – Die wissenschaftliche Eroberung des Mars. S. Fischer, Frankfurt am Main 2009, ISBN 978-3-10-062938-8
Auf dieser Seite verwendete Medien
On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the "prime meridian," or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large "transit circle," a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This "International Reference Meridian" is now about 100 meters east of the Airy Transit at Greenwich.)
For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Mädler in 1830-32. They used a small circular feature, which they designated "a," as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ("Middle Bay") by Camille Flammarion.
When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive "control net" of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named "Airy-0" (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit, 746A46), and these two images were the basis of the martian longitude system for the rest of the 20th Century.
The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has attempted to take a picture of Airy-0 on every close overflight since the beginning of the MGS mapping mission. It is a measure of the difficulty of hitting such a small target that nine attempts were required, since the spacecraft did not pass directly over Airy-0 until almost the end of the MGS primary mission, on orbit 8280 (January 13, 2001).
In the left figure above, the outlines of the Mariner 9, Viking, and Mars Global Surveyor images are shown on a MOC wide angle context image, M23-00924. In the right figure, sections of each of the three images showing the crater Airy-0 are presented. A is a piece of the Mariner 9 image, B is from the Viking image, and C is from the MGS image. Airy-0 is the larger crater toward the top-center in each frame.
The MOC observations of Airy-0 not only provide a detailed geological close-up of this historic reference feature, they will be used to improve our knowledge of the locations of all features on Mars, which will in turn enable more precise landings on the Red Planet by future spacecraft and explorers.Very high resolution topographic shaded relief map of Mars, based on the Mars Orbiter Laser Altimeter (MOLA) data set from the Mars Global Surveyor spacecraft. The map has a resolution 0.125° (300 dots per inch) and is shown as a Mercator projection to latitude 70° north and south. The original NASA image has been modified by increasing the font size of the map grid and elevation key labels. Polar regions are added from enlarged crops of PIA02993; the areas from 60° to 75° latitude are in the transverse Mercator projection, and those from 75° to 90° latitude are in the Lambert azimuthal equal-area projection.
Some of the features in this image have been annotated in Wikimedia Commons.