AlphaFold
AlphaFold und AlphaFold2 sind tiefe neuronale Netze aus Transformern, die eine Proteinstruktur basierend auf der Aminosäuresequenz des Proteins vorhersagen.[1]
Das Programm wurde vom in London ansässigen Unternehmen Deepmind entwickelt und erreichte beim Critical Assessment of Techniques for Protein Structure Prediction (CASP) Wettbewerb 2018 und 2020 Bestwerte.[2][3] In der medizinischen Fachwelt wurde dies als Durchbruch der Proteinstrukturvorhersage aufgenommen.[4] Seit dem 15. Juli 2021 unterliegt die Software einer Open-Source-Lizenz – auch für kommerzielle Unternehmen. Zudem wurde die Funktionsweise im Fachjournal Nature veröffentlicht. Jeder kann jetzt Proteine falten[5][6] oder in Datenbanken (wie der AlphaFold Protein Structure Database[7]) mit automatisch generierten Modellen nachschauen[8].
Meta hat 2022 mit ESMFold (Evolutionary Scale Modeling Fold) ein weiteres Large Language Model zur Proteinstrukturvorhersage vorgestellt[9].
Einzelnachweise
- ↑ AlphaFold. In: Deepmind. Abgerufen am 30. November 2020.
- ↑ Ewen Callaway: ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. In: Nature. 588, 2020, S. 203, doi:10.1038/d41586-020-03348-4.
- ↑ Robert F. Service: ‘The game has changed.’ AI triumphs at solving protein structures. In: sciencemag.org. 1. Dezember 2020, abgerufen am 24. Dezember 2020 (englisch).
- ↑ Sam Shead: DeepMind solves 50-year-old ‘grand challenge’ with protein folding A.I. In: CNBC. 30. November 2020, abgerufen am 18. Dezember 2020 (englisch).
- ↑ Ewen Callaway: Open-Source-Software: Jeder kann jetzt Proteine falten. In: www.spektrum.de. Spektrum der Wissenschaft, 19. Juli 2021, abgerufen am 7. August 2020.
- ↑ J. Jumper, R. Evans et al.: Highly accurate protein structure prediction with AlphaFold. In: Nature. 15. Juli 2021, doi:10.1038/s41586-021-03819-2.
- ↑ AlphaFold Protein Structure Database. Abgerufen am 30. September 2021.
- ↑ Ewen Callaway: DeepMind’s AI predicts structures for a vast trove of proteins. In: Nature. Band 595, Nr. 7869, 22. Juli 2021, S. 635–635, doi:10.1038/d41586-021-02025-4 (nature.com [abgerufen am 30. September 2021]).
- ↑ Language models of protein sequences at the scale of evolution enable accurate structure prediction Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives doi: https://doi.org/10.1101/2022.07.20.500902