Adrenozeptoren

Kristallstruktur des β2-Adrenozeptors im Komplex mit seinem Liganden Carazolol

Adrenerge Rezeptoren oder kurz Adrenozeptoren sind Rezeptoren, die von den natürlichen Botenstoffen Adrenalin und Noradrenalin aktiviert werden. Sie sind somit die Ursache für die durch Adrenalin und Noradrenalin vermittelten Effekte. Adrenozeptoren spielen insbesondere im sympathisch innervierten Gewebe eine wichtige Rolle. Darüber hinaus kommen sie z. B. aber auch im Zentralnervensystem und auf Blutplättchen vor.

Einteilung

Adrenozeptoren sind G-Protein-gekoppelte Rezeptoren der Klasse A und besitzen als solche eine nahe Verwandtschaft mit dem Rhodopsin. Die neun identifizierten menschlichen Rezeptorproteine werden auf Grund ihrer pharmakologischen und molekularbiologischen Eigenschaften in drei Familien unterteilt:

Darüber hinaus wurde basierend auf abweichenden pharmakologischen Eigenschaften ein „α1L“-Adrenozeptor als ein Phänotyp des α1A-Adrenozeptors und ein „β4“-Adrenozeptor als niedrigaffine Variante des β1-Adrenozeptors postuliert.[2][3] Ein als α2D-Adrenozeptor bezeichneter Rezeptor der Nagetiere stellte sich als das Orthologe des menschlichen α2A-Adrenozeptors heraus.

Erstmals eingeteilt hatte die Adrenorezeptoren 1948 der Pharmakologe Raymond P. Ahlquist.

Struktur

Wie für alle G-Protein-gekoppelten Rezeptoren wird für die Adrenozeptoren eine aus sieben Zellmembran durchspannende Helices bestehende Struktur angenommen. Diese konnte anhand von Röntgenkristallstrukturdaten auch zumindest für den β1- und den β2-Adrenozeptor bestätigt werden. Ebenso wie Rhodopsin besitzen die Adrenozeptoren eine intrazelluläre Helix 8 (Hx8). Im Gegensatz zu allen anderen G-Protein-gekoppelten Rezeptoren mit bekannter Kristallstruktur konnte sowohl für β1- als auch für β2-Adrenozeptoren eine zusätzliche Helixstruktur in der zweiten extrazellulären Schleife (ECL2) nahe der Ligandenbindungstasche nachgewiesen werden.[4][5][6]

Pharmakologie

Arzneistoffe, die mit Adrenozeptoren wechselwirken, werden auf vielfältige Weise in der Pharmakotherapie eingesetzt. Dabei finden sowohl Agonisten als auch Antagonisten Anwendung. Adrenalin und Noradrenalin selbst werden als Notfalltherapeutika verwendet.

Hemmstoffe der α1-Adrenozeptoren, die zu den sogenannten Alphablockern gehören, werden insbesondere in der Behandlung des Bluthochdrucks eingesetzt. Alphablocker mit einer Selektivität für den α1A-Subtyp, beispielsweise Tamsulosin, haben sich zudem in der Therapie der benignen Prostatahyperplasie bewährt. Ein Alphablocker mit einer Selektivität für α2-Adrenozeptoren, das Yohimbin, besaß in der symptomatischen Behandlung der erektilen Dysfunktion eine Bedeutung. α-Sympathomimetika, Substanzen, die agonistisch an α-Adrenozeptoren wirken, werden unter anderem als Nasensprays zum Abschwellen der Nasenschleimhaut eingesetzt. α2-Adrenozeptoragonisten besitzen zudem als Antihypertensiva (Blutdrucksenker) und in der symptomatischen Behandlung des Glaukoms eine Bedeutung.

Ein sehr breites Anwendungsspektrum besitzen Betablocker. Sie werden insbesondere in der Behandlung des Bluthochdrucks, der koronaren Herzkrankheit, der chronischen Herzinsuffizienz, der Herzrhythmusstörungen und der Migräne eingesetzt. Für ihre Entdeckung wurde 1988 Sir James Whyte Black mit dem Nobelpreis für Physiologie oder Medizin geehrt. β2-Sympathomimetika werden in der Lungenheilkunde zur Akuttherapie bei Asthma bronchiale und COPD sowie in der Geburtshilfe als Tokolytika eingesetzt.

Literatur

  • S Guimarães, D Moura: Vascular adrenoceptors: an update. In: Pharmacol. Rev. 53. Jahrgang, Nr. 2, Juni 2001, S. 319–356, PMID 11356987.
  • PP Griffin, M Schubert-Zsilavecz, H Stark: Hemmstoffe von Beta-Adrenozeptoren. In: Pharmazie in unserer Zeit. 33. Jahrgang, Nr. 6, 2004, S. 442–449, doi:10.1002/pauz.200400091.

Weblinks

Einzelnachweise

  1. I. J. Elenkov, R. L. Wilder et al.: The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. In: Pharmacol Rev. 52. Jahrgang, Nr. 4, 2000, S. 595–638, PMID 11121511.
  2. JR Docherty: Subtypes of functional alpha1-adrenoceptor. In: Cell. Mol. Life Sci. Oktober 2009, doi:10.1007/s00018-009-0174-4, PMID 19862476.
  3. JR Arch: Do low-affinity states of beta-adrenoceptors have roles in physiology and medicine? In: Br. J. Pharmacol. 143. Jahrgang, Nr. 5, November 2004, S. 517–518, doi:10.1038/sj.bjp.0705991, PMID 15514247, PMC 1575436 (freier Volltext).
  4. SG Rasmussen, HJ Choi, DM Rosenbaum et al.: Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. In: Nature. 450. Jahrgang, Nr. 7168, November 2007, S. 383–387, doi:10.1038/nature06325, PMID 17952055.
  5. V Cherezov, DM Rosenbaum, MA Hanson et al.: High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. In: Science. 318. Jahrgang, Nr. 5854, November 2007, S. 1258–1265, doi:10.1126/science.1150577, PMID 17962520, PMC 2583103 (freier Volltext).
  6. T Warne, MJ Serrano-Vega, JG Baker et al.: Structure of a beta1-adrenergic G-protein-coupled receptor. In: Nature. 454. Jahrgang, Nr. 7203, Juli 2008, S. 486–491, doi:10.1038/nature07101, PMID 18594507.

Auf dieser Seite verwendete Medien

Beta-2 adrenergic receptor.png
Crystal structure of the beta-2 adrenergic receptor (ADRB2) with its inverse agonist carazolol. Derived from the 2.4 Å crystal stucture of the bata-2 adrenoceptor/T4 lysozyme fusion protein (2RH1, Cherezov V et al. (2007). High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein Coupled Receptor. Science (in press). PMID: 17962520). Structural informations were obtained from pdb.org and modelled using spdbv.
Blue: TMI.
Lightblue: TMII.
Cyan: TMIII.
Green: TMIV.
Lightgreen: Helix in ECL2.
Yellow: TMVV.
Organge: TMVI.
Red-orange: TMVII.
Red: Hx8.