Selbstähnlichkeit

Ein Ausschnitt aus der Mandelbrot-Menge

Selbstähnlichkeit im engeren Sinne ist die Eigenschaft von Gegenständen, Körpern, Mengen oder geometrischen Objekten, in größeren Maßstäben (d. h. bei Vergrößerung) dieselben oder ähnliche Strukturen aufzuweisen wie im Anfangszustand. Diese Eigenschaft wird unter anderem von der fraktalen Geometrie untersucht, da fraktale Objekte eine hohe bzw. perfekte Selbstähnlichkeit aufweisen. Die Mandelbrot-Menge ist streng genommen und im Gegensatz zu häufig zu lesenden Meinungen nicht selbstähnlich: Im Prinzip kann man jedem Ausschnitt des Randes in jeder Vergrößerung bei genügender Auflösung ansehen, von welchem Punkt er stammt.

Im weiteren Sinne wird der Begriff auch in der Philosophie sowie den Sozial- und Naturwissenschaften verwendet, um grundsätzlich wiederkehrende, in sich selbst verschachtelte Strukturen zu bezeichnen.

Beispiele

Selbstähnlichkeit am Beispiel des Sierpinski-Dreiecks
Selbstähnlichkeit am Beispiel der Koch-Kurve

Bei Fraktalen ist von exakter (oder strikter) Selbstähnlichkeit die Rede, wenn bei unendlicher Vergrößerung des untersuchten Objekts immer wieder die ursprüngliche Struktur erhalten wird, ohne jemals eine elementare Feinstruktur zu erhalten. Exakte Selbstähnlichkeit ist praktisch nur bei mathematisch – z. B. durch ein iteriertes Funktionen-System – erzeugten Objekten zu finden. Beispiele dafür sind das Sierpinski-Dreieck, die Koch-Kurve, die Cantor-Menge oder trivialerweise ein Punkt und eine Gerade.

Die Mandelbrot-Menge und die Julia-Mengen sind selbstähnlich, nicht jedoch strikt selbstähnlich. Strikte Selbstähnlichkeit impliziert Skaleninvarianz und lässt sich unter anderem mit Hilfe der charakteristischen Exponenten des zugrundeliegenden Potenzgesetzes (Skalengesetzes) quantifizieren.

Ähnlichkeits-Dimension

Für selbstähnliche Mengen, die aus um den Faktor verkleinerten Versionen ihrer selbst bestehen, ist die Ähnlichkeitsdimension

definiert. Man beachte, dass man hier keinen Grenzwert braucht.

Beispiele

Ein Quadrat besteht aus 4 Quadraten () der halben () Seitenlänge und hat damit die Ähnlichkeitsdimension .

Das Sierpinski-Dreieck besteht aus um den Faktor verkleinerten Kopien seiner selbst. Seine Ähnlichkeits-Dimension ist .[1]

Die Koch-Kurve besteht aus um den Faktor verkleinerten Kopien ihrer selbst. Ihre Ähnlichkeits-Dimension ist .[2]

Aber schon ein Kreis besteht nicht aus verkleinerten Kreisen, und die Ähnlichkeitsdimension ist nicht definiert. Die fraktale Dimension vieler bekannter Fraktale lässt sich aber damit bestimmen. Aufgrund der fehlenden Grenzwertbildung ist die Ähnlichkeitsdimension besonders einfach und ist deshalb oft die einzige für Laien verständliche fraktale Dimension. Diese Methode der Dimensionsberechnung drängt sich insbesondere auch bei IFS-Fraktalen auf.

Natur

Blütenstand des Romanesco mit fraktalen Strukturen und Fibonacci-Spiralen

Real existierende Beispiele wären z. B. die Verästelung von Blutgefäßen, Farnblättern oder Teile eines Blumenkohls (das wird bei der Sorte Romanesco sehr deutlich), die in einfacher Vergrößerung dem Blumenkohlkopf sehr ähnlich sind. Bei realen Beispielen lässt sich die Vergrößerung selbstverständlich nicht bis ins Unendliche fortsetzen, wie es bei idealen Objekten der Fall ist.

Auch beliebige Abbildungen der realen Welt weisen Selbstähnlichkeiten auf, die z. B. bei der fraktalen Bildkompression oder der fraktalen Tonkompression genutzt werden.

Die Rekurrenzen bezeichnen den Aufruf oder die Definition einer Funktion durch sich selbst, die demzufolge selbstähnlich sind.

Die Selbstähnlichkeit ist ein Phänomen, das oft in der Natur auftritt. Eine kennzeichnende Zahl für die immer wiederkehrende Selbstähnlichkeit ist der Goldene Schnitt.

Auch die Trajektorien eines Wiener-Prozesses sowie der gebrochenen Brownschen Bewegung sind selbstähnlich.

Literatur

  • Henning Fernau: Iterierte Funktionen, Sprachen und Fraktale. B. I. Wissenschaftsverlag, Mannheim – Wien – Zürich 1994, ISBN 3411170115.

Weblinks

Einzelnachweise

  1. Wolfram MathWorld: Sierpiński Sieve
  2. Wolfram MathWorld: Koch Snowflake

Auf dieser Seite verwendete Medien

Mandel zoom 14 satellite julia island.jpg
Autor/Urheber: Wolfgang Beyer, Lizenz: CC-BY-SA-3.0
* Partial view of the Mandelbrot set. Step 14 of a zoom sequence: On the first sight these islands seem to consist on infinitely many parts like Cantor sets, as it is actually the case for the corresponding Julia set Jc. Here they are connected by tiny structures so that the whole represents a simply connected set. These tiny structures meet each other at a satellite in the center which is too small to be recognized at this magnification. The value of c for the corresponding Jc is not that of the image center but has relative to the main body of the Mandelbrot set the same position as the center of this image relative to the satellite shown in zoom step 7.
  • Coordinates of the center: Re(c) = -.743,643,887,037,151, Im(c) = .131,825,904,205,330
  • Horizontal diameter of the image: .000,000,000,051,299
  • Magnification relative to the initial image: 59,979,000,000
Romanesco.jpg
Autor/Urheber: unknown, Lizenz: CC-BY-SA-3.0
Kochsim.gif
A Koch curve has an infinitely repeating self-similarity when it is magnified.