Oxisch

Beispiel Eutrophierung durch Seevögel: Schematische Darstellung gekoppelter Prozesse der lokalen und regionalen Umwelteffekte in Seevogelkolonien. Kolonien können als Nährstoff-Hotspots betrachtet werden, insbesondere für N und P. Stickstoff ist der Schlüsselnährstoff in Meeresumgebungen und Phosphor in kontinentalen Gewässern. Beide kommen in hohen Konzentrationen im Kot von Seevögeln vor. Harnsäure ist die dominierende N-Verbindung, während ihrer Mineralisierung entstehen verschiedene N-Formen: (1) Ammonifikation erzeugt NH3 und NH4+, und (2) Nitrifikation produziert NO3 durch NH4+-Oxidation. Unter den alkalischen Bedingungen, die typisch für den Kot von Seevögeln sind, wird der NH3 schnell volatisiert (3) und in NH4+ umgewandelt, der aus der Kolonie transportiert und durch feuchte Ablagerung in entfernte Ökosysteme exportiert wird, die eutrophiert werden (4). In ähnlicher Weise können Nährstoffe in der Kolonie ausgelaugt und durch Abfluss und Grundwasserversickerung (5) transportiert werden, was in den Fällen (4) und (5) Umweltauswirkungen auf regionaler Ebene erzeugt. Andererseits kann NH4+ im Boden (ornithogene Böden) von Organomineralien adsorbiert werden und als austauschbares Kation verbleiben (Panel a). Der Boden NH4+ in der Kolonie kann durch Nitrifikationsprozesse zu Nitrat oxidiert und schnell in unterirdische oder oberflächliche Gewässer gespült werden, wodurch nahe gelegene Ökosysteme eutrophiert werden (lokale Auswirkungen, 5). In beiden Fällen können NO3 und NH4+ Bäche und kleine Seen erreichen und diese eutrophieren (regionaler Einfluss). Der Phosphorkreislauf ist einfacher und hat eine eher eingeschränkte Mobilität. Dieses Element kommt in einer Reihe von chemischen Formen im Fäkalien von Seevögeln vor, aber das mobilste und bioverfügbarste ist Orthophosphat (HPO4=), das in unterirdische oder oberflächliche Gewässer verflüssigt (gelöst) werden kann (5). Ein wichtiger Teil des P kann jedoch durch Fe/Al-Oxyhydroxide in sauren Böden adsorbiert werden. Durch Erosion können diese Kolloide in anoxisches Süßwasser oder Mündungssedimente gelangen, wo P durch die reduktive Auflösung von Fe(III)-oxyhydroxiden an die Wassersäule freigesetzt wird (Panel b). Wenn die Kolloide oxische Meeressedimente erreichen, kann P immer noch durch alkalische Desorption an das Wasser abgegeben werden (Panel c), ein Prozess, der Änderungen in der Oberflächenladung von Fe/Al-Oxyhydroxiden beinhaltet. In beiden Fällen kommt es zu einer Wassereutrophierung.

Oxisch (auch oxysch oder oxyisch) bedeutet „oxidierend“ oder als engerer Begriff „Sauerstoff enthaltend“. Das Gegenteil ist anoxisch.

Oxische Systeme haben ein hohes Redoxpotential.

Der Ausdruck „oxisch“ wird besonders zur Charakterisierung der Umgebung von Lebewesen wie Gewässer, Gewässersedimente, Böden und künstliche Anlagen verwendet. In einem oxischen System können nur Organismen aktiv sein, die Sauerstoff vertragen oder sogar auf Sauerstoff angewiesen sind (fakultative Anaerobier bzw. obligate Aerobier).[1] Das Begriffspaar oxxisch/anoxisch wird oft zur Beschreibung submariner Lebensräume herangezogen.[2]

Auch bei der Veränderung durch die Große Sauerstoffkatastrophe wird von einer Wandlung von anoxischen zu oxischen Bedingungen gesprochen.[3]

Einzelnachweise

  1. Katrin Schwarz: Mikrokosmos-und Felduntersuchungen zur mikrobiellen Aktivität in oxisch-sulfidischen Chemoklinen im marinen Pelagial. Dissertation, Christian-Albrechts-Universität zu Kiel, 1995.
  2. Elisabeth Hild: Haupt-und Spurenelementchemismus von Unterkreidesedimenten (Apt/Alb) aus dem Niedersächsischen Becken. Dissertation, Universität Oldenburg, 2000.
  3. Franziska Babst: Die Anpassung von Mikroorganismen im Zusammenhang mit dem Auftreten von Sauerstoff auf der Erde. Fallstudie „Diversität der Mikroorganismen“, Bio-126, 2006 (PDF).

Auf dieser Seite verwendete Medien

Seabird ornitheutrophication coupling.png
Autor/Urheber: Xosé Luis Otero, Saul De La Peña-Lastra, Augusto Pérez-Alberti, Tiago Osorio Ferreira & Miguel Angel Huerta-Diaz, Lizenz: CC BY 4.0
Seabird ornitheutrophication coupling. Schematic summary of processes coupling local and regional environmental effects in seabird colonies. Colonies can be considered as nutrient hot spots, especially, for N and P. Nitrogen is the key nutrient in marine environments and phosphorous in continental waters. Both are found in high concentrations in seabird feces. Uric acid is the dominant N compound, and during its mineralization different N forms are produced: (1) ammonification produces NH3 and NH4+, and (2) nitrification produces NO3− by NH4+ oxidation. Under the alkaline conditions, typical of the seabird feces, the NH3 is rapidly volatized (3) and transformed to NH4+, which is transported out of the colony, and through wet-deposition exported to distant ecosystems, which are eutrophized (4). Similarly, nutrients in the colony can be leached and transported out through runoff and groundwater seepage (5), generating in cases (4) and (5) environmental impacts at the regional level. On the other hand, NH4+ in soil (ornithogenic soils) can be adsorbed by organominerals and remain as an exchangeable cation (panel a). The soil NH4+ in the colony can be oxidized to nitrate through nitrification processes, and rapidly washed to subterranean or superficial waters, eutrophizing nearby ecosystems (local impact, 5). In both cases, the NO3− and NH4+ can reach creeks and small lakes, eutrophizing them (regional impact). Phosphorus cycle is simpler and has a rather reduced mobility. This element is found in a number of chemical forms in the seabird fecal material, but the most mobile and bioavailable is orthophosphate (HPO4=), which can be lixiviated (solubilized) to subterranean or superficial waters (5). However, an important fraction of the P can be adsorbed by Fe/Al oxyhydroxides in acidic soils. Through erosion, these colloids can reach anoxic freshwater or estuarine sediments, where P is liberated to the water column by the reductive dissolution of Fe(III) oxyhydroxides (panel b). If the colloids reach oxic marine sediments, P can still be liberated to the water by alkaline desorption (panel c), a process that involves changes in the surface charge of Fe/Al oxyhydroxides. In both cases, water eutrophization is produced.