ExoMars Trace Gas Orbiter

ExoMars Trace Gas Orbiter

ExoMars Trace Gas Orbiter mit Lander Schiaparelli
NSSDC ID2016-017A
Missions­zielMarsorbitVorlage:Infobox Sonde/Wartung/Missionsziel
Auftrag­geberEuropaische Weltraumorganisation ESA
RoskosmosVorlage:Infobox Sonde/Wartung/Auftraggeber
Träger­raketeProton-M/Bris-MVorlage:Infobox Sonde/Wartung/Traegerrakete
Aufbau
Startmasse4332 kg (Startgesamtmasse),
3732 kg (Orbiterstartmasse),
600 kg (Landerstartmasse)Vorlage:Infobox Sonde/Wartung/Startmasse
Instrumente
Vorlage:Infobox Sonde/Wartung/Instrumente

MATMOS, SOIR, NOMAD, EMCS, HiSCI, MAGIE

Verlauf der Mission
Startdatum14. März 2016, 09:31:42 UTCVorlage:Infobox Sonde/Wartung/Startdatum
StartrampeBaikonur 200/39Vorlage:Infobox Sonde/Wartung/Startrampe
Enddatum2022 (geplant)Vorlage:Infobox Sonde/Wartung/Enddatum
Vorlage:Infobox Sonde/Wartung/Verlauf
 
14. März 2016Start
 
16. Oktober 2016Schiaparelli-TGO-Trennung
 
19. Oktober 2016TGO: Eintritt in den Marsorbit
 
19. Oktober 2016Schiaparelli: ungeplante harte Landung
 
Dezember 2016TGO ändert Inklination auf den endgültigen Orbit (74°)
 
Dezember 2016Abstieg im Orbit, von T = 4 auf 1 Sol
 
Januar–Dezember 2017Atmosphärenbremsung bis hinunter zum 400-km-Orbit
 
11. Juli – 11. August 2017Solare Konjunktion (Sonne steht zwischen Erde und Mars)
 
April 2018Beginn der wissenschaftlichen Mission; Relais für Lander der NASA
 
Dezember 2022Ende der TGO-Hauptmission
 
2023Beginn der Relaisfunktion für den ExoMars-Rover
 

Der ExoMars Trace Gas Orbiter (kurz TGO, englisch für [ExoMars-]Spurengas-Orbiter) ist eine Mission der Europäischen Weltraumorganisation (ESA) im Rahmen des ExoMars-Projektes in Zusammenarbeit mit der russischen Raumfahrtagentur Roskosmos zur Erforschung der Marsatmosphäre. Der Orbiter wurde am 14. März 2016 mit einer russischen Proton-Rakete gestartet und trat am 19. Oktober 2016 in eine Umlaufbahn um den Mars ein.

Primäres Ziel ist, ein besseres Verständnis der Vorgänge in der Marsatmosphäre zu erhalten und Gase wie Methan sowie andere Spurengase auf biologische oder geologische Ursachen hin zu untersuchen. Der Orbiter soll auch helfen, mögliche Landestellen für den 2024 geplanten ExoMars Rover zu finden und ihm dann als Relaisstation zur Erde dienen.[1]

Zusätzlich wurde der Lander Schiaparelli mitgeführt, mit dem Landetechniken auf dem Mars erprobt werden sollten. Beim Landeversuch ging der Funkkontakt mit Schiaparelli verloren und konnte nicht wiederhergestellt werden.[2] Laut ESA erfolgte „keine sanfte Landung“.[3]

Geschichte

Das ursprünglich rein europäische Projekt hat im Laufe der Jahre viele Veränderungen durchlaufen. Als das Finanzvolumen immer größer wurde, kam es zunächst zu einer Zusammenarbeit mit der NASA. Als sich diese 2012 wieder zurückzog, kam es schließlich zur Kooperation mit Roskosmos.

Trace Gas Orbiter

Der TGO wurde von der ESA entwickelt. Die wissenschaftlichen Instrumente wurden sowohl in Europa als auch in Russland entwickelt. Wichtigste Aufgabe ist die Untersuchung von Methan und dessen Zerfallsprodukten, auch im Hinblick auf mögliche biologische Ursachen. Die wissenschaftliche Mission begann im April 2018 und soll über fünf Jahre laufen. Wenn 2023 der ExoMars Rover gelandet ist, soll der Orbiter auch als Relaisstation zur Erde dienen.

Wichtigstes Ziel ist die Gewinnung eines besseren Verständnisses von Methan und anderen Spurengasen in der Marsatmosphäre. Mit weniger als 1 % Bestandteil in der ohnehin schon dünnen Marsatmosphäre können sie dennoch wichtige Hinweise auf mögliche biologische oder geologische Aktivitäten geben. Methan wurde bereits früher nachgewiesen und es wurde auch gezeigt, dass die Konzentration sich über die Zeit und verschiedene Orte verändert. Da Methan in geologischen Zeiträumen sehr kurzlebig ist, wird angenommen, dass es aktuell aktive Quellen für dieses Gas gibt. Ursachen können biologische, aber auch chemische Prozesse sein. Auf der Erde wird Methan von Lebewesen bei der Verdauung und im Faulschlamm erzeugt; chemische Prozesse, wie die Oxidation von (kohlenstoffhaltigem) Eisen oder die Wechselwirkung von Ultraviolettstrahlung mit Meteoritenmaterial[4], sind aber auch eine mögliche Ursache.

Die Instrumente sollen verschiedene Spurengase detektieren (Methan, Wasserdampf, Stickstoffdioxid, Ethin (Acetylen)) und dabei vorherige Untersuchungen in der Genauigkeit um drei Größenordnungen übertreffen. Weiterhin sollen saisonale Änderungen der Zusammensetzung und Temperatur der Atmosphäre bestimmt werden, um die Modelle der Atmosphäre zu verfeinern. Darüber hinaus kann Wasserstoff bis hin zu einem Meter Tiefe mit einer größeren Genauigkeit nachgewiesen werden. Damit könnten unter der Oberfläche verstecktes Wassereis oder mögliche Quellen für Spurengase gefunden werden, die einen Einfluss auf zukünftige Landestellen haben könnten.[5]

Erste Auswertungen der Messungen des TGO konnten jedoch trotz der hohen Empfindlichkeit des NOMAD-Spektrografen[6] das Vorhandensein von Methangas in der Marsatmosphäre nicht bestätigen[7].

Aufbau des Orbiters

ExoMars TGO (links) mit Schiaparelli im Vergleich zu Mars Express; ExoMars TGO ist die bisher größte und schwerste Marssonde.

Der Aufbau wurde von früheren ExoMars-Szenarien abgeleitet und ist in der Masse im Wesentlichen von der Kapazität der Proton-Startrakete bestimmt.

  • Sonde: 3,2 m × 2 m × 2 m mit Solarzellen (17,5 m Spannweite) und 2000 W Leistung
  • Startmasse: 4332 kg (davon 112 kg wissenschaftliche Instrumente und 600 kg Schiaparelli)
  • Antrieb: Bipropellant (Methylhydrazin (MMH) als Treibstoff, Mixed Oxides of Nitrogen (MON-1) als Oxidator),[8] mit einem 424 N starken Haupttriebwerk für den Eintritt in den Marsorbit sowie weitere größere Kurskorrekturen
  • Stromversorgung: zusätzlich zu den Solarzellen zwei Lithium-Ionen-Akkus mit insgesamt 5100 Wh Kapazität
  • Kommunikation: eine 2,2-m-Parabol-Hochgewinnantenne (High Gain Antenna – HGA, 65 Watt, X-Band) und drei Rundstrahlantennen (Low Gain Antenna – LGA) für die Kommunikation zur Erde sowie ein Electra-UHF-Transceiver von der NASA[9] zur Kommunikation mit Landern und Rovern auf der Oberfläche

Instrumente

Der Orbiter führt folgende Messgeräte mit:[10]

  • NOMAD (Nadir and Occultation for MArs Discovery), drei hochempfindliche Spektrometer, zwei für den Bereich der Infrarotstrahlung und einer für die Ultraviolettstrahlung, mit denen nach Spurenelementen und anderen Bestandteilen der Marsatmosphäre gesucht werden soll.
  • ACS (Atmospheric Chemistry Suite), drei Infrarotinstrumente, mit denen die Chemie der Marsatmosphäre untersucht werden soll.
  • CaSSIS (Colour and Stereo Surface Imaging System), eine hochauflösende Kamera mit einer Auflösung von fünf Metern je Pixel (aus etwa 400 km Höhe),[1] um farbige und Stereoaufnahmen der Marsoberfläche zu machen, vor allem von Gebieten, in denen mit Hilfe von NOMAD und ACS der Austritt von Spurengasen festgestellt wurde.
Das FREND-ähnliche LEND-Instrument des Lunar Reconnaissance Orbiters
  • FREND (Fine Resolution Epithermal Neutron Detector), ein Neutronendetektor, der Ablagerungen von Wassereis auf und einen Meter unter der Oberfläche aufspüren und so eine genaue Wassereiskarte des Mars erstellen soll.[11]

Ablauf der Mission

Vorbereitungen und Start

Nach Tests und Integration der kompletten Hardware bei Thales Alenia Space in Cannes (Frankreich) wurde diese zusammen mit weiterem Bodenequipment am 17. Dezember 2015 per Konvoi nach Turin in Italien transportiert. Vom Flughafen Turin-Casselle wurde dann alles in drei Flügen (18., 20. und 22. Dezember 2015) mit einer Antonow An-124 zum Kosmodrom Baikonur geflogen und anschließend in einem Reinraum untergebracht, um eine Vorwärts-Kontamination des Mars zu vermeiden.

Für die Startvorbereitungen wurde ein provisorisches Zelt innerhalb einer Halle in Baikonur aufgebaut, um sicherzustellen, dass der TGO und Schiaparelli nicht von Mikroben von der Erde kontaminiert werden. Damit sollen die strengen Vorgaben zum planetaren Schutz erfüllt werden, da die Hallen alleine nicht den westlichen Standards zum Schutz des Mars entsprechen.[12]

Im Verlauf der weiteren Vorbereitungen wurde Schiaparelli im Januar 2016 mit dem Druckgas Helium sowie 45 kg Hydrazin-Treibstoff befüllt. Das unter Druck stehende Helium wird benötigt, um den Treibstoff in die Triebwerke zu befördern. Die insgesamt drei Treibstofftanks sollen neun kleine Triebwerke versorgen, die den Lander nach dem Abbremsen durch den Fallschirm am Weg zur Marsoberfläche weiter abbremsen sollten. Am 12. Februar 2016 wurde der Lander mit dem Orbiter durch 27 Schrauben verbunden. Diese Verbindungen bestehen aus gespannten Klammern, die ohne Explosivmittel Schiaparelli kurz vor dem Erreichen des Mars wieder von dem Orbiter trennten.[13][14] Bis zum 23. Februar 2016 wurde dann auch der Orbiter mit 1,5 Tonnen Oxidator und einer Tonne Hydrazin vollständig betankt.[15] Am 8. März 2016 wurde das komplette Raumschiff auf die Proton-Rakete aufgesetzt,[16] diese einige Tage später (am 11. März 2016) zur Startrampe gebracht und dort für den Start senkrecht aufgerichtet.[17]

Der TGO wurde zusammen mit Schiaparelli am 14. März 2016 um 09:31 UTC mit einer russischen Proton-Rakete planmäßig in Baikonur gestartet. Nach dem Start musste die Bris-M-Oberstufe insgesamt vier Brennmanöver ausführen, um zehn Stunden später das Raumschiff in Richtung Mars zu schicken. Um 20:13 UTC wurde die Bris-M-Oberstufe erfolgreich von der Sonde getrennt. Der erste Kontakt von der Sonde zum Kontrollzentrum in Darmstadt kam um 21:29 UTC zustande. Nach einem siebenmonatigen Flug trat die Sonde am 19. Oktober 2016 in den Marsorbit ein.

Während der solaren Konjunktion im Juli/August 2017 war die Funkverbindung zur Erde unterbrochen.

Trace Gas Orbiter

Modell des Orbiters in Originalgröße im Gebäude der ESOC in Darmstadt

Wegen der günstigen Position der Erde bezüglich des Mars erreichte die Sonde nur sieben Monate später, im Oktober 2016, den Mars. Drei Tage vor dem Ziel trennte sich Schiaparelli von dem Orbiter, um seinen Abstieg Richtung Marsoberfläche zu beginnen. Der Orbiter schwenkte am 19. Oktober 2016 zunächst in einen hohen elliptischen Orbit um den Mars ein, um danach durch Atmosphärenbremsung auf einen etwa 400 km hohen kreisförmigen Orbit zu kommen. Für optimale Bremswirkung und zur Stabilisierung der Ausrichtung des Satelliten wurden seine Solarmodule wie eine Art Flügel eingesetzt. Durch regelmäßige Korrekturmanöver wurde die Periapsis auf etwa 110 km Höhe gehalten, teilweise kam der Orbiter bis auf 103 km an die Marsoberfläche heran. Insgesamt konnten durch Aerobraking über 1000 m/s Geschwindigkeit abgebaut werden und die Apoapsis von ursprünglich 33.200 km auf 1.050 km reduziert werden.[18] Am 20. Februar 2018 wurde die Atmosphärenbremsung abgeschlossen und TGO mit seinem Triebwerk zuerst in einen Orbit von 1050 × 200 km gebracht,[19] der bis zum 9. April in eine Kreisbahn von 400 km Höhe korrigiert wurde.[20] Anschließend begann die wissenschaftliche Mission, die vom Europäischen Raumflugkontrollzentrum in Darmstadt überwacht wird.

Schiaparelli

Modell des Landers in Originalgröße im Kontrollzentrum (ESOC) in Darmstadt, geplanter Zustand nach Abwurf des unteren und oberen Schutzschilds
Vorher-Nachher-Aufnahme der Marsoberfläche durch den Mars Reconnaissance Orbiter der NASA: Die am 20. Oktober 2016 nachgewiesenen Flecke sind der Absturzort von Lander (schwarz, oben) und Fallschirm (weiß, unten). Rechts am Rand eine vergrößerte Darstellung des gerahmten Bereichs.

Mit etwa 21.000 km/h sollte der Lander auf die Atmosphäre treffen, um dann zuerst mit einem Hitzeschild und anschließend per Fallschirm seine Geschwindigkeit zu reduzieren. Die Geschwindigkeit sollte danach mit Bremsraketen so lange weiter reduziert werden, dass der Lander zuletzt ca. zwei Meter über dem Marsboden schweben konnte. Aus dieser Höhe sollte er – abgefangen durch einen verformbaren Unterbau – zu Boden fallen. Nach der Landung sollte die Kommunikation zur Erde unter anderem durch einen NASA-Orbiter (2001 Mars Odyssey oder Mars Reconnaissance Orbiter) erfolgen.

Schon kurz nach dem erwarteten Zeitpunkt der Landung war von der ESA bekannt gegeben worden, dass der Funkkontakt des Landers zu dem im indischen Pune befindlichen Giant Metrewave Radio Telescope (GMRT) während der Landephase abgebrochen war. Zugleich war der Funkkontakt von Schiaparelli zur Raumsonde Mars Express abgebrochen. Die von beiden Quellen sowie vom Mutterschiff registrierten und zur Erde gesendeten Daten ergaben laut ESA, „dass die Phasen des Eintritts und des Abstiegs in die Atmosphäre wie erwartet verlaufen sind, die Ereignisse nach dem Abwurf des hinteren Hitzeschilds und des Fallschirms jedoch auf einen nicht planmäßigen Verlauf hindeuten. So scheint der Abwurf früher als geplant erfolgt zu sein.“[3] Zugleich teilte die ESA in einer ersten Analyse am 20. Oktober 2016 mit: „Was die Triebwerke anbetrifft, kann zwar mit Sicherheit gesagt werden, dass sie für eine kurze Zeit gezündet wurden, es aber danach aussieht, dass sie ihren Betrieb früher als erwartet eingestellt haben.“ Das Fehlverhalten habe zur Folge gehabt, dass „keine sanfte Landung erfolgte.“[3] Der Aufprallort des Landers und des abgeworfenen Fallschirms wurde am 20. Oktober 2016 anhand von Fotografien der Marsoberfläche durch MRO-Aufnahmen nachgewiesen;[21] zugleich berichtete die ESA am 21. Oktober 2016: „Es wird geschätzt, dass Schiaparelli aus einer Höhe zwischen zwei und vier Kilometern gefallen ist und somit mit einer Geschwindigkeit von mehr als 300 km/h aufgeschlagen ist.“ Es sei möglich, „dass das Landegerät beim Aufprall explodiert ist, da die Treibstofftanks wahrscheinlich noch gefüllt waren.“

Erkenntnisse

Ende des Jahres 2021 erklärte die ESA, dass das FREND-Instrument des ExoMars Trace Gas Orbiter große Wasservorkommen am Valles Marineris einen Meter unterhalb der Marsoberfläche detektiert hat.[22]

Siehe auch

Weblinks

Commons: ExoMars Trace Gas Orbiter – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b ExoMars Trace Gas Orbiter and Schiaparelli Mission (2016). In: exploration.esa.int. 20. Oktober 2016, abgerufen am 28. Oktober 1016 (englisch).
  2. Mars-Sonde „Schiaparelli“ weiterhin verschollen. In: Sueddeutsche.de. 20. Oktober 2016, abgerufen am 28. Oktober 2016.
  3. a b c Analyse der Abstiegsdaten von Schiaparelli ist im Gang. In: ESA.int. 20. Oktober 2016, abgerufen am 28. Oktober 2016.
  4. Methan auf dem Mars stammt von Meteoriten statt von Bakterien. In: Scinexx. 31. Mai 2012, abgerufen am 30. Dezember 2018.
  5. ExoMars Trace Gas Orbiter (TGO). In: exploration.esa.int. 16. Oktober 2016, abgerufen am 28. Oktober 2016 (englisch).
  6. ExoMars Trace Gas Orbiter Instruments. In: Robotic Exploration of Mars. ESA, 4. November 2016, abgerufen am 30. Dezember 2018 (britisches Englisch).
  7. Nadja Podbregar: Mars: Rätsel um verschwundenes Methan. In: Scinexx. 18. Dezember 2018, abgerufen am 30. Dezember 2018.
  8. ExoMars (Exobiology on Mars). In: directory.eoportal.org. Abgerufen am 28. Oktober 2016 (englisch).
  9. NASA’s Participation in ESA’s 2016 ExoMars Orbiter Mission. In: mars.nasa.gov. Oktober 2016, abgerufen am 28. Oktober 2016.
  10. ExoMars Trace Gas Orbiter Instruments – Investigating the Martian atmosphere. In: exploration.esa.int. 25. Juli 2016, abgerufen am 28. Oktober 2016 (englisch).
  11. ExoMars Trace Gas Orbiter Instruments. FREND – Fine Resolution Epithermal Neutron Detector. In: exploration.esa.int. 25. Juli 2016, abgerufen am 28. Oktober 2016 (englisch).
  12. European Mars probe arrives at launch site. In: Spaceflightnow.com. 27. Dezember 2015, abgerufen am 5. Januar 2016 (englisch).
  13. ExoMars orbiter and lander mated for final time. In: Spaceflightnow.com. 19. Februar 2016, abgerufen am 22. Februar 2016 (englisch).
  14. Uniting the Trace Gas Orbiter and Schiaparelli. Video. In: ESA.int. 18. Februar 2016, abgerufen am 22. Februar 2016 (englisch).
  15. Fuelling the Trace Gas Orbiter. In: ESA.int. 23. Februar 2016, abgerufen am 24. Februar 2016 (englisch).
  16. Assembly complete for ExoMars’ Proton launcher. In: Spaceflightnow.com. 8. März 2016, abgerufen am 9. März 2016 (englisch).
  17. ExoMars launch updates. In: ESA.int. 11. März 2016, archiviert vom Original am 12. März 2016; abgerufen am 12. März 2016 (englisch).
  18. Armelle Hubault: Aerobraking down, down. In: ESA Rocket Science Blog. 1. Februar 2018, abgerufen am 7. Februar 2018 (englisch).
  19. ESA: Surfing Complete. 21. Februar 2018, abgerufen am 9. Mai 2018 (englisch).
  20. ESA: ExoMars poised to start science mission. 9. April 2018, abgerufen am 9. Mai 2018 (englisch).
  21. Mars Reconnaissance Orbiter sieht Schiaparelli Landestelle. In: ESA.int. 21. Oktober 2016, abgerufen am 28. Oktober 2016.
  22. ExoMars discovers hidden water in Mars’ Grand Canyon. Abgerufen am 19. Dezember 2021 (englisch).

Auf dieser Seite verwendete Medien

ExoMars Trace Gas Orbiter Model at ESOC.JPG
Autor/Urheber: Gerbil, Lizenz: CC BY-SA 4.0
Modell in Originalgröße von ExoMars Trace Gas Orbiter, gesehen im ESOC, Darmstadt
PIA21130 Signs of Schiaparelli Test Lander Seen From Orbit.gif
This comparison of before-and-after images shows two spots that likely appeared in connection with the Oct. 19, 2016, Mars arrival of the European Space Agency's Schiaparelli test lander.

The images were taken by the Context Camera (CTX) on NASA's Mars Reconnaissance Orbiter on May 29, 2016, and Oct. 20, 2016.

The area indicated with a black outline is enlarged at right. The bright spot near the lower edge of the enlargement is interpreted as likely to be the lander's parachute, which was deployed and then released during the descent through the Martian atmosphere. The larger dark spot near the upper edge of the enlargement was likely formed by the Schiaparelli lander. The spot is elliptical, about 50 by 130 feet (15 by 40 meters) in size, and is probably too large to have been made by the impact of the heat shield. The location information confirmed by this image will aid imaging the site with the High Resolution Imaging Science Experiment (HiRISE) camera, providing more details to use in interpretation.

The main image covers an area about 2.5 miles (4 kilometers) wide, at about 2 degrees south latitude, 354 degrees east longitude, in the Meridiani Planum region of Mars. The scale bars are in meters. North is up. The before and after images are available separately as Figure 1 (from CTX observation J03_046129_1800) and Figure 2 (from CTX observation J08_047975_1779).

CTX was built by and is operated by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.
ZL-Marke.svg
Icon für eine vertikale Zeitleiste
ExoMars TGO size vs Mars Express.svg
Autor/Urheber: SkywalkerPL, Lizenz: CC BY 4.0
Comparison of ExoMars Trace Gas Orbiter size with Mars Express (smaller, top-right) and a human silhouette (blue). MARSIS radar boom cut short to fit into the image.
ESA LOGO.svg
Autor/Urheber:

ESA

, Lizenz: Logo

Logo der ESA

ZL-Start.svg
Icon für eine vertikale Zeitleiste
ZL-Pfeil.svg
Icon für eine vertikale Zeitleiste
Ulysses preparations.jpg
Technicians in Hangar AO on Cape Canaveral Air Force Station continue preflight checkout and testing of the Ulysses spacecraft. Ulysses is a NASA/European Space Agency project scheduled for launch on Space Shuttle Mission STS-41 this fall.
Schiaparelli Lander Model at ESOC.JPG
Autor/Urheber: Gerbil, Lizenz: CC BY-SA 4.0
Modell des Landers Schiaparelli, Teil des Projektes ExoMars Trace Gas Orbiter 2016, ausgestellt im ESOC in Darmstadt
222991main lrolend 20080417 HI.jpg
LRO's Lunar Exploration Neutron Detector LEND Credit: NASA/Debbie McCallum

> Larger image Lunar Exploration Neutron Detector

The Lunar Exploration Neutron Detector (LEND) will create high-resolution maps of hydrogen distribution and gather information about the neutron component of the lunar radiation environment. LEND data will be analyzed to search for evidence of water ice near the moon’s surface. LEND was developed at the Institute for Space Research in Moscow.


> More information about LEND: http://l503.iki.rssi.ru/LEND-en.html
ExoMars Trace Gas Orbiter.jpg
ExoMars Trace Gas Orbiter